Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667789

RESUMO

Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial activity against Gram-positive, Gram-negative bacteria, and fungi. The peptide fractions showed interesting minimum inhibitory concentration (MIC) values (up to 0.125 µg/mL) against the tested pathogens. Further investigation and characterization of tentacle acid extracts with significant antimicrobial activity led to the purification of peptides through reverse phase chromatography on solid phase and HPLC. Broad-spectrum antimicrobial peptide activity was found in 40% acetonitrile fractions. The resulting peptides had a molecular mass of 2612.91 and 3934.827 Da and MIC ranging from 0.06 to 0.20 mg/mL. Sequencing revealed similarities to AMPs found in amphibians, fish, and Cnidaria, with anti-Gram+, Gram-, antifungal, candidacidal, anti-methicillin-resistant Staphylococcus aureus, carbapenemase-producing, vancomycin-resistant bacteria, and multi-drug resistant activity. Peptides 6.2 and 7.3, named Equinin A and B, respectively, were synthesized and evaluated in vitro towards the above-mentioned bacterial pathogens. Equinin B exerted interesting antibacterial activity (MIC and bactericidal concentrations of 1 mg/mL and 0.25 mg/mL, respectively) and gene organization supporting its potential in applied research.


Assuntos
Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/isolamento & purificação , Peptídeos Antimicrobianos/química , Anêmonas-do-Mar/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/química , Fungos/efeitos dos fármacos
2.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240205

RESUMO

Benthic marine invertebrates, such as corals, are often subjected to injury caused by several sources. Here, the differences and characteristics in injured and health tissues in terms of cellular components are shown through a histological investigation of the soft coral Anemonia viridis at 0 h, 6 h, 24 h, and 7 days after injury caused by tentacle amputation. In addition, a new tool was used for the first time in invertebrates, positron emission tomography, in order to investigate the events that occur during regeneration within a longer time period (0 h, 24 h, and 14 days after the tentacles were cut). Higher integrated density values were measured through a densitometric analysis in sections stained with Fontana-Masson at 24 h after the tentacles were cut. This suggests an increase in melanin-like containing cells and a subsequent increase in fibroblast-like cells differentiated by amoebocytes that converge to the lesion site in the early stages of inflammation and regeneration. This work provides, for the first time, an elucidation of the events that occur during wound-healing and regeneration in basal metazoan, focusing on the characterisation of immune cells and their role. Our results indicate that Mediterranean anthozoan proves to be a valuable model for studying regeneration. Many events highlighted in this research occur in different phyla, suggesting that they are highly conserved.


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Invertebrados , Organismos Aquáticos , Cicatrização
3.
Artigo em Inglês | MEDLINE | ID: mdl-36280133

RESUMO

The quantification of capture-related physiological stress is an important factor when assessing the potential for post-release survival in sharks that are incidentally captured. In the absence of these biological data and when the post-release fate is unknown, effective management plans cannot be formulated and may lead to highly susceptible shark populations being overfished. Here, we measured the levels of lactate, glucose, alanine amino transferase (ALT), aspartate amino transferase (AST), Ca2+, Na+ K+,Cl - Mg 2+ and Pi in the plasma of mature and immature lesser spotted dogfish (Scyliorhinus canicula, herein dogfish) which were incidentally captured at two depths (shallow: 50-200 m, and deep: 201-500 m) by bottom trawl off the coast of southern Sicily. These values were used as biomarkers and physiological indicators of the secondary stress response associated with capture. This study found that dogfish captured in deeper waters (below 200 m) had elevated levels of glucose, Na+, Ca2+ and K+ compared to those inhabiting depths less than <200 m. We hypothesize that the elevated levels of physiological stress in dogfish captured at greater depths may be related to the prolonged duration of the interactions with the fishing gear in the area off southern Sicily. Our findings provide new data on the capture-related stress in dogfish and increase the understanding of the potential for post-release survival in sharks captured at two depths by bottom trawl, information that is important for improving the general management plans for the fishery. However, our PC Analysis results revealed that Maturity have a positive contribution from the sample weight, sample length, ALT, AST and a negative contribution from Pi.


Assuntos
Tubarões , Animais , Cação (Peixe)/fisiologia , Ácido Láctico , Glucose , Biomarcadores
4.
Artigo em Inglês | MEDLINE | ID: mdl-36182080

RESUMO

The aim of this work is to study the immune responses of the polychaete Sabella spallanzanii after exposure to copper sulphate, an immunomodulating agent in marine organisms, and the multiple stresses caused by Escherichia coli infection, to validate the species as a model organism in marine-coastal biomonitoring programmes. Polychaetes were housed in laboratory and divided into five experimental groups: 1. Control (no microinjected), 2. filtered seawater + TBS injection (control of point 3), 3. filtered seawater + E. coli injection (control of point 4), 4. CuSO4 + TBS injection (control of point 5), and 5. CuSO4 + E. coli injection. The immune variables, esterase and alkaline phosphatase activity, cytotoxicity and detoxifying/antioxidant enzymes such as glutathione peroxidase were evaluated in total body extracts of the animals. Moreover, toll-like receptor, allograft inflammatory factor-1, lysozyme and haemagglutinating activity were investigated to highlight possible interactions. Indeed, the results of this work demonstrate the immunomodulating effect of copper sulphate on S. spallanzanii total body extracts related to oxidative stress and inflammatory markers.


Assuntos
Sulfato de Cobre , Poliquetos , Animais , Sulfato de Cobre/toxicidade , Escherichia coli , Água do Mar , Estresse Oxidativo
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073146

RESUMO

Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.


Assuntos
Matriz Extracelular/metabolismo , Regeneração , Anêmonas-do-Mar/crescimento & desenvolvimento , Cicatrização , Animais , Colágeno Tipo I/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34126205

RESUMO

The increasing availability of sequenced genomes has enabled a deeper understanding of the complexity of fish lectin repertoires involved in early development and immune recognition. The teleost fucose-type lectin (FTL) family includes proteins that preferentially bind fucose and display tandemly arrayed carbohydrate-recognition domains (CRDs) or are found in mosaic combinations with other domains. They function as opsonins, promoting phagocytosis and the clearance of microbial pathogens. The Antarctic fish Trematomus bernacchii is a Perciforme living at extremely low temperatures (-1.68 °C) which is considered a model for studying adaptability to the variability of environmental waters. Here, we isolated a Ca++-independent fucose-binding protein from the serum of T. bernacchii by affinity chromatography with apparent molecular weights of 32 and 30 kDa under reducing and non-reducing conditions, respectively. We have characterized its carbohydrate binding properties, thermal stability and potential ability to recognize bacterial pathogens. In western blot analysis, the protein showed intense cross-reactivity with antibodies specific for a sea bass (Dicentrarchus labrax) fucose-binding lectin. In addition, its molecular and structural aspects, showing that it contains two CRD-FTLs confirmed that T. bernacchii FTL (TbFTL) is a bona fide member of the FTL family, with binding activity at low temperatures and the ability to agglutinate bacteria, thereby suggesting it participates in host-pathogen interactions in low temperature environments.


Assuntos
Bactérias/metabolismo , Fucose/metabolismo , Lectinas/sangue , Lectinas/fisiologia , Perciformes/fisiologia , Sequência de Aminoácidos , Animais , Regiões Antárticas , Sequência de Bases , Lectinas/isolamento & purificação , Lectinas/metabolismo , Filogenia
7.
J Comp Physiol B ; 191(1): 143-158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979067

RESUMO

Filter-feeding organisms accumulate xenobiotics and other substances in their tissues. They can be useful as sentinel organisms in biomonitoring of the marine compartment. Bivalve cellular immunity is ensured by phagocytosis and cytotoxic reactions carried out by hemocytes in a network with humoral responses. These can be affected by chemical contaminants in water that can be immunosuppressors also at a low concentration increasing the sensibility to pathogens. This work is an attempt to individuate cellular markers for pollution detection, investigating the effect of methylmercury (CH3HgCl) at different concentrations on the activity and hemocyte morphology of the Mediterranean mussel, Mytilus galloprovincialis. We assessed the effect of three sub-lethal concentrations of the organometal on the cellular morphology, the efficacy of phagocytosis toward yeast cells, the alteration of the lysosomal membrane and the ability to release cytotoxic molecules. The results provide information on the alteration of hemocyte viability, modification of the morphological and cytoskeletal features and besides the cellular spreading, intrinsic ability of motile cells was used as a complementary investigation method. Exposure to the contaminant affected the percentage of phagocytosis and the phagocytosis index. Moreover, morphological and cytoskeleton alteration, caused by the pollutant, leads to reduced ability to incorporate the target and adhere to the substrate and the low ability of cells to retain neutral red could depend on the effects of methylmercury on membrane permeability. These results reinforce the use of the Mediterranean mussel as model for the evaluation of environmental quality in aquatic ecosystems integrating the novel information about hemocyte functions and morphology sensibility to organic mercury.


Assuntos
Mercúrio , Mytilus , Animais , Ecossistema , Hemócitos , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA